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Sulfonation of meso-tetra(thien-2 -yl)porphyrin with concentrated sulfuric acid was found to produce
several tetrasulfonated meso-tetra(thien-20-yl)porphyrin isomers, where sulfonic acid groups were
substituted at the 5- or the 4-positions of the thienyl groups, and the tetrasodium salts of the isomers
were successfully isolated by reversed-phase HPLC. Temperature dependence of the production ratio of
the isomers revealed that sulfonation reactions at the 5- and the 4-positions of 2-porphyrinylthiophene
occur under kinetic and thermodynamic control, respectively.
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The sulfonation of aromatic compounds is a well-known rever-
sible electrophilic substitution reaction, which leads to regio-
selective sulfonation under kinetically and thermodynamically
controlled conditions. Temperature dependent sulfonation of
naphthalene is a typical example of such reactions, which has
attracted considerable amount of experimental and theoretical
studies.1 In the case of five-membered aromatic rings, electrophilic
substitution occurs at both a- and b-positions depending on their
substituents and the reaction condition;2 however, there has been
no report on temperature dependent regioselective sulfonation to
the best of our knowledge. Herein, we report that the sulfonation
of 2-porphyrinylthiophene with concentrated sulfuric acid shows
high positional selectivity at the 5- and the 4-positions depending
on temperature. In this study, we first tried to synthesize meso-tet-
rakis(5-sulfothien-20-yl)porphyrin (T(5-STh)P)3 aiming to examine
its self-assembling behaviour because of its potential J-aggregate
formation like protonated meso-tetrakis(4-sulfonatophenyl)por-
phyrin J-aggregate.4 In the course of preparing T(5-STh)P according
to the reported literature,3 we found that the sulfonation of meso-
tetra(thien-20-yl)porphyrin (TThP) with concentrated sulfuric acid
produces unreported sulfonated TThP isomers, whose sulfonic acid
groups are substituted at the 4-positions of the thienyl groups
(Scheme 1). For gaining insight into the reaction mechanism, the
temperature dependence of the sulfonation was examined.

TThP was synthesized through a similar procedure with the re-
ported literature.5 Sulfonation of TThP was carried out with 96%
sulfuric acid at 0–130 �C for 1 h.6 The neutralized reaction mixture
with NaHCO3 was separated by reversed-phase HPLC, and the tet-
rasodium salts of sulfonated meso-tetra(thien-20-yl)porphyrin iso-
mers of 1, 2, 3a + 3b, 4 and 5 were successfully isolated (Scheme
ll rights reserved.
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1).7 The compounds 1–5 were characterized by UV–vis, 1H NMR,
elemental analyses and mass spectroscopy.8 1H NMR spectra of
all the compounds were measured at 80 �C because of the substan-
tial broadening of the signals accompanied with aggregation and/
or tautomerism at room temperature (Fig. 1). The 1H NMR spectra
of the isomers only consisted of signals of the pyrrole and the thi-
enyl protons. The two couples of the doublets of the thienyl groups
(J1 = 3.5, J2 = 1.5 Hz) revealed that the sulfonic acid groups are
5 : R1 = R2 = R3 = R4 = 
S SO3Na SO3Na
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Scheme 2.

Figure 1. 1H NMR spectra of 1–5 in D2O at 80 �C.
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substituted at the 5- and the 4-positions of the thienyl groups. The
ratio of the total areas of the signals corresponding to the 5- and
the 4-sulfothienyl groups made clear the assignment of each iso-
mer. The slight difference of the peak maxima of UV–vis absorption
spectra among the isomers is consistent that the 3-positions of the
thienyl groups are not substituted by sulfonic acid groups.9 It is
remarkable that the porphyrin isomers with 5- and 4-sulfothienyl
groups could be separated in spite of the seemingly slight struc-
Figure 2. HPLC chromatograms of the reaction products sulfonated at various
temperatures.
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Figure 3. Relative production proportion of 1–5 as a function of the sulfonation
temperature of TThP.
tural difference. The successful separation may be due to a
considerable difference in their electronic properties,10 which
could differentiate the steric structure such as the rotational angles
between the porphyrin core and the thienyl groups.

The production yields of the compounds 1–5 depended strongly
on the reaction temperature, as is shown in HPLC chromatograms
of reaction products sulfonated at various temperatures (Fig. 2).
Figure 3 shows the diagram depicting the relative production pro-
portion of each isomer to all isomers as a function of the sulfona-
tion temperature of TThP. The diagram demonstrates that a
predominant product changes from 1 at lower temperatures to 5
at higher temperatures. This result reveals a high positional selec-
tivity of the sulfonation of 2-porphyrinylthiophene, where the
electrophilic substitution reaction at the 5- and the 4-positions
occurs under kinetic and thermodynamic control conditions,
respectively (Scheme 2).

This finding will lead to further progress of sulfonation reaction
of five-membered aromatic compounds and provide important
information for the sulfonation of thiophene derivatives.
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